⚝
One Hat Cyber Team
⚝
Your IP:
216.73.216.133
Server IP:
185.119.109.197
Server:
Linux managedhosting.chostar.me 5.15.0-160-generic #170-Ubuntu SMP Wed Oct 1 10:06:56 UTC 2025 x86_64
Server Software:
Apache
PHP Version:
8.1.33
Buat File
|
Buat Folder
Eksekusi
Dir :
~
/
proc
/
self
/
root
/
usr
/
share
/
ri
/
3.0.0
/
system
/
Float
/
View File Name :
cdesc-Float.ri
U:RDoc::NormalClass[iI" Float:ET@I"Numeric;To:RDoc::Markup::Document:@parts[o;;[ : @fileI"*ext/bigdecimal/lib/bigdecimal/util.rb;T:0@omit_headings_from_table_of_contents_below0o;;[ o:RDoc::Markup::Paragraph;[I"CFloat objects represent inexact real numbers using the native ;TI"Carchitecture's double-precision floating point representation.;To:RDoc::Markup::BlankLine o;;[I"IFloating point has a different arithmetic and is an inexact number. ;TI";So you should know its esoteric system. See following:;T@o:RDoc::Markup::List: @type:BULLET:@items[o:RDoc::Markup::ListItem:@label0;[o;;[I"Dhttps://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html;To;;0;[o;;[I"Shttps://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise;To;;0;[o;;[I"Chttps://en.wikipedia.org/wiki/Floating_point#Accuracy_problems;T; I"numeric.c;T; 0; 0; 0[ [U:RDoc::Constant[i I" RADIX;TI"Float::RADIX;T:public0o;;[o;;[I"HThe base of the floating point, or number of unique digits used to ;TI"represent the number.;T@o;;[I"TUsually defaults to 2 on most systems, which would represent a base-10 decimal.;T; @*; 0@*@cRDoc::NormalClass0U;[i I" MANT_DIG;TI"Float::MANT_DIG;T;0o;;[o;;[I":The number of base digits for the +double+ data type.;T@o;;[I"Usually defaults to 53.;T; @*; 0@*@@:0U;[i I"DIG;TI"Float::DIG;T;0o;;[o;;[I"LThe minimum number of significant decimal digits in a double-precision ;TI"floating point.;T@o;;[I"Usually defaults to 15.;T; @*; 0@*@@:0U;[i I"MIN_EXP;TI"Float::MIN_EXP;T;0o;;[o;;[I"IThe smallest possible exponent value in a double-precision floating ;TI"point.;T@o;;[I"Usually defaults to -1021.;T; @*; 0@*@@:0U;[i I"MAX_EXP;TI"Float::MAX_EXP;T;0o;;[o;;[I"HThe largest possible exponent value in a double-precision floating ;TI"point.;T@o;;[I"Usually defaults to 1024.;T; @*; 0@*@@:0U;[i I"MIN_10_EXP;TI"Float::MIN_10_EXP;T;0o;;[o;;[I"IThe smallest negative exponent in a double-precision floating point ;TI"+where 10 raised to this power minus 1.;T@o;;[I"Usually defaults to -307.;T; @*; 0@*@@:0U;[i I"MAX_10_EXP;TI"Float::MAX_10_EXP;T;0o;;[o;;[I"NThe largest positive exponent in a double-precision floating point where ;TI"%10 raised to this power minus 1.;T@o;;[I"Usually defaults to 308.;T; @*; 0@*@@:0U;[i I"MIN;TI"Float::MIN;T;0o;;[ o;;[I"RThe smallest positive normalized number in a double-precision floating point.;T@o;;[I"1Usually defaults to 2.2250738585072014e-308.;T@o;;[ I"4If the platform supports denormalized numbers, ;TI"4there are numbers between zero and Float::MIN. ;TI"H0.0.next_float returns the smallest positive floating point number ;TI"$including denormalized numbers.;T; @*; 0@*@@:0U;[i I"MAX;TI"Float::MAX;T;0o;;[o;;[I"NThe largest possible integer in a double-precision floating point number.;T@o;;[I"1Usually defaults to 1.7976931348623157e+308.;T; @*; 0@*@@:0U;[i I"EPSILON;TI"Float::EPSILON;T;0o;;[o;;[I"IThe difference between 1 and the smallest double-precision floating ;TI"!point number greater than 1.;T@o;;[I"0Usually defaults to 2.2204460492503131e-16.;T; @*; 0@*@@:0U;[i I" INFINITY;TI"Float::INFINITY;T;0o;;[o;;[I"2An expression representing positive infinity.;T; @*; 0@*@@:0U;[i I"NAN;TI"Float::NAN;T;0o;;[o;;[I"@An expression representing a value which is "not a number".;T; @*; 0@*@@:0[ [[I" class;T[[;[ [:protected[ [:private[ [I" instance;T[[;[5[I"%;TI"numeric.c;T[I"*;T@Ò[I"**;T@Ò[I"+;T@Ò[I"-;T@Ò[I"-@;T@Ò[I"/;T@Ò[I"<;T@Ò[I"<=;T@Ò[I"<=>;T@Ò[I"==;T@Ò[I"===;T@Ò[I">;T@Ò[I">=;T@Ò[I"abs;T@Ò[I" angle;TI"complex.c;T[I"arg;T@ñ[I" ceil;T@Ò[I"coerce;T@Ò[I"denominator;TI"rational.c;T[I"divmod;T@Ò[I" eql?;T@Ò[I" fdiv;T@Ò[I"finite?;T@Ò[I" floor;T@Ò[I" hash;T@Ò[I"infinite?;T@Ò[I"inspect;T@Ò[I"magnitude;T@Ò[I"modulo;T@Ò[I" nan?;T@Ò[I"negative?;T@Ò[I"next_float;T@Ò[I"numerator;T@ú[I" phase;T@ñ[I"positive?;T@Ò[I"prev_float;T@Ò[I"quo;T@Ò[I"rationalize;T@ú[I" round;T@Ò[I" to_d;TI"*ext/bigdecimal/lib/bigdecimal/util.rb;T[I" to_f;T@Ò[I" to_i;T@Ò[I"to_int;T@Ò[I" to_r;T@ú[I" to_s;T@Ò[I" truncate;T@Ò[I" zero?;T@Ò[;[ [;[ [ [U:RDoc::Context::Section[i 0o;;[ ; 0; 0[ I"complex.c;T@ I"ext/date/lib/date.rb;TI"*ext/psych/lib/psych/scalar_scanner.rb;TI"+lib/matrix/eigenvalue_decomposition.rb;TI"lib/prime.rb;T@*I"rational.c;T@DcRDoc::TopLevel